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Abstract
Recent years have seen advances in our understanding of the neural circuits associated with trauma-related disorders, and the
development of relevant assays for these behaviors in rodents. Although inherited factors are known to influence individual
differences in risk for these disorders, it has been difficult to identify specific genes that moderate circuit functions to affect
trauma-related behaviors. Here, we exploited robust inbred mouse strain differences in Pavlovian fear extinction to uncover
quantitative trait loci (QTL) associated with this trait. We found these strain differences to be resistant to developmental cross-
fostering and associated with anatomical variation in basolateral amygdala (BLA) perineuronal nets, which are developmentally
implicated in extinction. Next, by profiling extinction-driven BLA expression of QTL-linked genes, we nominated Ppid
(peptidylprolyl isomerase D, a member of the tetratricopeptide repeat (TPR) protein family) as an extinction-related candidate
gene. We then showed that Ppid was enriched in excitatory and inhibitory BLA neuronal populations, but at lower levels in the
extinction-impaired mouse strain. Using a virus-based approach to directly regulate Ppid function, we demonstrated that
downregulating BLA-Ppid impaired extinction, while upregulating BLA-Ppid facilitated extinction and altered in vivo neuronal
extinction encoding. Next, we showed that Ppid colocalized with the glucocorticoid receptor (GR) in BLA neurons and found
that the extinction-facilitating effects of Ppid upregulation were blocked by a GR antagonist. Collectively, our results identify
Ppid as a novel gene involved in regulating extinction via functional actions in the BLA, with possible implications for
understanding genetic and pathophysiological mechanisms underlying risk for trauma-related disorders.

Introduction

There are marked individual differences in risk for trauma-
related anxiety disorders including posttraumatic stress
disorder (PTSD) [1]. This variation is due in part to the
modifying influence of inherited risk and resilience factors
and the interaction among genetic variants and stressful life
events [2, 3]. Prior studies have uncovered some of the
specific genetic candidates involved; finding, for example,
increased prevalence of PTSD in trauma-exposed indivi-
duals with variants in the pituitary adenylate cyclase-
activating polypeptide, serotonin transporter [4], nociceptin/
orphanin FQ receptor [5], and FK506 binding protein 5 [6]
genes, among others [7]. Recent and ongoing genome-wide
association studies (GWAS) reveal additional PTSD-
moderating genes, including NLGN1, RORA, PRTFDC1,
and ANKRD55 [8–11]. However, despite the rapid
progress made in delineating neural circuits associated with
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trauma-relevant measures in rodents [12], the genetic fac-
tors involved in these behaviors remain poorly understood.

Assaying Pavlovian fear and extinction in rodents has
become a widely adopted approach to studying the neural
and genetic basis of trauma-related behavior [13–22]. It is
becoming increasingly clear that the molecular pathways
and neural circuits mediating fear and extinction are shared
but also dissociable [12, 13, 21]. Furthermore, previous stu-
dies using gene mutation and pharmacological methods,
among other techniques, have identified a number of genes,
including those mentioned above, that are associated with fear
and extinction in humans and rodents alike [5, 19, 23–26]. An
alternative approach is to exploit phenotypic and genetic
differences across mouse strains to locate genomic regions
associated with variation in trauma-relevant behaviors [16, 17].
This approach has been successfully employed to identify
quantitative trait loci (QTL) for conditioned fear [27–38],
but has not yet been exploited to examine genetic influences
on fear extinction.

The first major aim of the current study was to uncover
novel QTL associated with variation in fear extinction in a
population generated from a cross between inbred mouse
strains (129S1/SvImJ and C57BL/6J, hereafter referred to as
‘S1’ and ‘B6’, respectively) that exhibit robust differences in
this trait. We then examined developmental factors influ-
encing strain differences in fear extinction, first by cross-
fostering S1 and B6 mice either prenatally, postnatally, or
post-weaning, and then comparing the strains on a neural
factor (basolateral amygdala (BLA) perineuronal nets)
implicated in the ontogeny of extinction. Next, we per-
formed BLA expression-profiling on genes located within
an extinction-associated QTL and, from this analysis,
nominated a novel candidate gene, peptidylprolyl isomerase
D, Ppid. Then, using a combination of immunocytochem-
istry and in situ hybridization, we determined the distribu-
tion, and neuronal subtype-specific expression of Ppid in
the BLA. To establish a causal role for BLA-Ppid in
extinction and gain insight into the gene’s functional effects
on extinction-encoding, we evaluated the effects of viral-
mediated BLA Ppid upregulation or downregulation on
extinction and associated in vivo neuronal activity. Lastly,
given Ppid’s known role as a hormone receptor modulator,
we biochemically determined co-localization of Ppid with
the glucocorticoid receptor (GR) in BLA neurons and tested
the necessity of GR signaling for the extinction-facilitating
effect of Ppid upregulation by pharmacologically antag-
onizing GR.

Materials and methods

With the exception of the F1 and F2 populations (which
were bred in-house), subjects were adult male C57BL/6J

(B6) and 129S1/SvImJ (S1) mice. The sample size used in
each behavioral tests were determined on the basis of
findings from our previous fear and extinction studies [39]
(see online methods for a full description of all procedures
used). For all behavioral and histological procedures,
experimenter was blinded to the group of each subject.
Following testing, F2 mice were genotyped for QTL map-
ping, using R/qtl [40]. B6 and S1 mice were cross-fostered
at three different developmental time points (prenatal,
postnatal, post-weaning) and tested for fear and extinction
in adulthood. B6 and S1 mice were examined for BLA
(prefrontal cortical and hippocampal) perineuronal nets at
various ages, via immunocytochemistry of biotin-
conjugated lectin wisteria floribunda agglutinin (WFA).
BLA perineuronal nets were degraded in S1 mice prior to
conditioning by local infusion of chondroitinase ABC
(ChABC), as described for B6 mice [41]. The BLA
expression of QTL-located genes was examined following
testing of B6 and S1 mice using the Illumina Murine
Medium Density Linkage Panel, followed by verification of
hits via real-time qPCR in an independently tested cohort.
Ppid protein and Ppid gene distribution, localization and
quantification in the BLA of B6 and S1 mice were exam-
ined using immunohistochemistry, in situ hybridization and
real-time qPCR. BLA Ppid expression was manipulated
using lentiviral shRNA vectors to knockdown or over-
express the gene, as confirmed by real-time qPCR. In vivo
BLA single-unit recordings were performed in S1 mice
virally overexpressing Ppid [42, 43]. BLA Ppid and GR co-
localization was determined in S1 mice using immunohis-
tochemistry and western blot, and GR expression compared
between strain using real-time qPCR and immunohis-
tochemistry. Expression of Hsp90 co-chaperones in S1 mice
with BLA Ppid overexpression was determined via real-
time qPCR. Effects of the GR agonist, dexamethasone were
tested in S1 and B6 mice, and effect of the GR antagonist,
RU-486, tested in S1 mice virally overexpressing
BLA Ppid.

Results

Fear and extinction QTL

We first sought to establish robust extinction differences
between two inbred mouse strains to use as a platform for
uncovering extinction-related genetic factors. To this end,
we showed that the strains exhibited similar freezing during
fear conditioning and fear retrieval, but S1 froze sig-
nificantly more than B6 by the final trial-block of extinction
acquisition and on an extinction retrieval test (Fig. 1a).
These differences replicate previous reports of a divergent
extinction phenotype in the B6 and S1 inbred strains
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Fig. 1 Genomic loci associated with fear and extinction. a S1 mice
showed increased freezing on extinction trial-block 10 (t(67)= 6.09,
P< .01, n= 31–38) and extinction retrieval (t(67)= 1.98, P ≤ .05),
relative to B6 mice. Both strains showed decreased freezing across
extinction trial-blocks (B6: t(30)= 11.63, P< .01; S1: t(37)= 2.16, P
< .05), and on extinction retrieval relative to extinction trial-block 1
(B6: t(30)= 4.75, P< .01; S1: t(37)= 2.25, P< .05). b Strategy for
producing an F2 population for QTL analysis by intercrossing B6 and
S1 mice to produce. c Decreased freezing across extinction trial-blocks
(t(368)= 23.78, P< .01, n= 371) and on extinction retrieval (t(368)
= 8.93, P< .01) in F2 mice. d Normal distribution of extinction

retrieval scores in the F2 population. Scores calculated as change in
freezing from extinction trial-block 1 to extinction retrieval, with
negative scores denoting a delta decrease in freezing and positive
scores an increase. e Significant genome-wide QTL for fear retrieval
(freezing on extinction trial-block 1) on chromosome 1 (4.5 peak
LOD, 73.3–182.4 Mb 95% confidence interval). f Significant genome-
wide QTL for fear retrieval scores on chromosome 3 (4.6 peak LOD,
77.1–93.1Mb 95% confidence interval). *P< .05 S1 versus B6, #P
< .05 Ext trial-block 10 versus 1, †P< .05 Ret versus Ext trial-block 1.
Data in panels a and c are means± SEM. Con conditioning, Ext
extinction, Ret retrieval, Ren renewal
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[44–46], consistent with deficient extinction in the S1 strain
under the currently employed fear and extinction testing
procedures.

Next, to identify sources of genetic variation underlying
these phenotypic strain differences, we crossed B6 and S1
mice to derive F1 hybrid mice and, from F1 breeders,
generated a F2 population of 371 mice in which each
individual mouse carried a unique combination of B6 and

S1 gene variants (Fig. 1b). Assessment of the F2 population
(Fig. 1c and d) for fear and extinction behavior revealed, on
average, behavior that was more reminiscent of the parental
B6, than S1, strain; with a significant decrease in freezing
across extinction trial-blocks (t(368)= 23.78, P< .01) and
significantly lesser freezing on retrieval, relative to extinc-
tion trial-block 1 (t(370)= 8.93, P < .01) (Figure S1). This
behavioral profile in the F2 population is suggestive of the

d

g S1 damB6 dam

P
er

ce
nt

 fr
ee

zi
ng

 
in

 
P

er
ce

nt
 fr

ee
zi

ng
 

in
 

Prenatal cross-fostered

B6 dam S1 dam

0

20

40

60

80

100

1 3 1 10 Ret
Con trial Ext trial-block

Ren 1 3 1 10 Ret
Con trial Ext trial-block

Ren 1 3 1 10 Ret
Con trial Ext trial-block

Ren

B6 dam S1 dam B6 cage-mate S1 cage-mate

0

20

40

60

80

100

1 3 1 10 Ret
Con trial Ext trial-block

Ren 1 3 1 10 Ret
Con trial Ext trial-block

Ren 1 3 1 10 Ret
Con trial Ext trial-block

Ren

S1 cage-mateB6 cage-mate

k

%
P

V-
po

si
tiv

e 
ce

lls
 

ex
pr

es
si

ng
 P

N
N

s

B6 S1

*

P
er

ce
nt

 fr
ee

zi
ng

 
in

 

Strain

Postnatal cross-fostered Post-weaning co-housed

S1 damB6 dam

Postnatal cross-fostered Post-weaning co-housed

WFA

PV

WFA PV

e f

h i

Test Test Test

Test Test Test

a b c
B6 cage-mate

S1 cage-mate

WeanlingB6 dam

S1 dam

LitterB6 dam

S1 dam

Embryo

0 0 0 0

0 0

l

#
#

#
#

# #

j m

BLA

0

15

30

45

60

75

B
6 

m
ic

e

†

†

†
†

†
†

ChABCVeh

0

20

40

60

80

100

1 3 1 10 Ret

Con trial Ext trial-block
Ren

Test

*
*

*

Prenatal cross-fostered

+

5 µm

Con Ext Ret
1d

S
1 

m
ic

e

S
1 

m
ic

e

1d 1d
ChABC

O. Gunduz-Cinar et al.



genetic dominance of the B6 allelic effects on extinction.
Next, F2s were genotyped using tissue from tail biopsies.
Of 1449 SNPs on the linkage panel, 880 were genetically
informative (i.e., differed between parental strains) and 778
gave the expected call with parental control DNA. From the
genotype data, we performed QTL analysis on four traits:
fear retrieval, extinction acquisition, extinction retrieval,
and fear renewal (Figure S1, Table S1). We found a QTL at
the genome-wide significance level for fear retrieval on
chromosome 1 (Fig. 1e) and an independent QTL for
extinction retrieval on chromosome 3 (Fig. 1f).

Our finding of a baseline fear-related QTL on chromo-
some 1 echoes the results of previous fear-QTL studies that
have examined other mouse strains [17, 27–34, 36, 47–51],
suggesting that this region harbors influential gene variants
for this trait. The extinction-related QTL that we identified
on chromosome 3, however, is to our knowledge the first
example of a genetic locus linked to this trait in rodents. It is
also noteworthy that the fear retrieval and extinction
retrieval QTL are located at different genomic sites, because it
implies independent genetic influences on these traits and
thereby provides a novel extension to mounting evidence that
fear and extinction are mediated by overlapping but dissoci-
able molecular pathways and neural circuits [12, 13, 21].
Further demonstrating this dissociation, we found that fear
retrieval and extinction retrieval was only weakly correlated
(r< .43), as was extinction acquisition and extinction retrieval

(r< .37). While perhaps not surprisingly, there was a some-
what stronger correlation between fear retrieval and extinction
acquisition (r< .50) (Figure S2). Additionally, to statistically
test whether the genetic effect on extinction retrieval was
independent of extinction acquisition, we evaluated the
chromosome 3 QTL effect on extinction retrieval with or
without extinction acquisition as a mediating variable. This
entailed comparing (1) a ‘full’ model of extinction retrieval
compromising the chromosome 3 genotype+ extinction
acquisition+ error (−2log-likelihood= 1631.73) with (2) a
‘reduced’ model consisting of only the chromosome 3 geno-
type (−2log-likelihood= 1664.49). The resultant likelihood
ratio test (X2= 32, df= 1, P> .05) suggests that while the
extinction retrieval trait was to some extent related to
extinction acquisition, this influence is independent of the
genetic effect on chromosome 3 and, furthermore, the chro-
mosome 3 extinction retrieval QTL does not have a sig-
nificant effect on extinction acquisition.

Developmental influences and differences

Our QTL data indicate that genetic factors contribute, at
least in part, to the differences in the fear extinction phe-
notype in the S1 and B6 strains. They do not, however, dis-
count the potential contribution of environmental factors,
particularly during critical periods of development that have
been found to shape extinction in rodents and humans [52, 53].
Therefore, to gain insight into the potential influence of
early life environment, we cross-fostered the two strains
either prenatally, postnatally or after weaning, and then
tested for extinction in adulthood (Fig. 2a–c). Regardless of
developmental period, we found that cross-fostering failed
to alter the (fear or) extinction phenotype in either strain
(e.g., cause a S1-like extinction deficit in fostered B6 mice,
or a rescue of extinction in fostered S1 mice), as compared
to control groups cross-fostered to a mouse of the same
strain (Fig. 2d–i).

The resistance of S1 mice to cross-fostering implies that
the impaired extinction phenotype in this strain may be
programmed relatively early in development. Indeed, we
confirmed that when tested at a juvenile age (P17) when rats
and B6 mice display enhanced extinction (‘fear erasure’)
[54], extinction in S1 mice was already impaired (Fig-
ure S3). In the context of these behavioral data, prior work
has shown that extinction becomes less effective after
weaning, in B6 mice and rats [41, 55], coincident with an
increase in the number of BLA parvalbumin-positive (PV+)
interneurons surrounded by perineuronal nets (PNNs) [41,
55]. BLA PNNs are comprised of extracellular matrix
chondroitin sulfate proteoglycans and posited to emerge
during development as a mechanism protecting fear mem-
ories from extinction-induced plasticity and synaptic
destabilization [41, 55–57]. Interestingly, we found that as

Fig. 2 Developmental influences on extinction. S1 and B6 were cross-
fostered a prenatally, b postnatally or c post-weaning and then tested
in adulthood (≥8 weeks of age). d Regardless of prenatal cross-fos-
tering, B6 mice showed decreased freezing across extinction trial-
blocks (B6 dam: t(9)= 12.72, P< .01; S1 dam: t(8)= 11.33, P< .01,
n= 8–9) and on extinction retrieval (F1,17= 16.33, P< .01). e
Regardless of postnatally cross-fostering, B6 mice showed decreased
freezing across extinction trial-blocks (B6 dam: t(22)= 6.21, P< .01;
S1 dam: t(25)= 7.30, P< .01, n= 22–35) and on extinction retrieval
(B6 dam: t(22)= 4.783, P< .01; S1 dam: t(25)= 2.51, P< .05). f
Regardless of post-weaning cross-fostering, B6 mice exhibited
decreased freezing across extinction trial-blocks (B6 dam: t(8)= 8.47,
P< .01; S1 dam: t(5)= 6.44, P< .01, n= 5–8) and on extinction
retrieval (B6 dam: t(8)= 4.14, P< .01; S1 dam: t(5)= 2.57, P= .05).
S1 mice showed no decrease in freezing across extinction trial-blocks
or on extinction retrieval irrespective of prenatal g (n= 14–16),
postnatal h (n= 12–15) or post-weaning i (n= 7–8) cross-fostering. j
Representative WFA-labeled PNNs around PV-positive BLA neurons.
k Adult S1 mice had a higher percentage of PV-positive BLA neurons
expressing PNNs, relative to B6 mice (t(136)= 4.19, P< .01, n=
64–74 sections from n= 10 mice per strain). The number of overall
PV-positive neurons counted did not differ between strains (data not
shown). l Cannula placements for intra-BLA ChABC infusions. m
Microinfusion of ChABC into the BLA of S1 mice decreased freezing
on the final conditioning-trial (t(36)= 2.48, P< .05, n= 15–23),
extinction retrieval (t(36)= 2.22, P< .05, n= 15–23) and fear renewal
(REN) (t(36)= 4.03, P< .01), relative to vehicle. *P< .05 S1 versus
B6, ChABC versus Veh, #P< .05 Ext trial-block 10 versus 1, †P< .05
Ret versus Ext trial-block 1. Data are means± SEM. Con condition-
ing, Ext extinction, Ret retrieval, Ren renewal

Ppid regulates amygdala-mediated fear extinction



compared to adult B6 mice, adult S1 mice had a sig-
nificantly higher number of BLA PV+ interneurons sur-
rounded by PNNs (Fig. 2j–k). Indeed, when we compared
the strains across juvenile and adult ages, we found the
percentage of PV+ cells surrounded by PNNs was con-
sistently higher in S1 mice in the BLA, but not in sub-
regions of the prefrontal cortex and hippocampus
(Figure S4).

We went on to show that locally degrading PNNs via
intra-BLA infusion of ChABC in S1 mice reduced freezing
(Fig. 2l, m), consistent with a functional role for BLA PNNs
in the behavioral phenotype of this strain. It should be noted
that while a ChABC-induced reduction in freezing during
extinction replicates the effect reported in adult B6 [41], S1
mice also showed a reduction in freezing during the last trial
of fear conditioning. This indicates a somewhat differing
pattern of ChABC effects in the two strains, with reduced
freezing during extinction in the S1 mice potentially
reflecting a weakening of the original fear memory, rather
than an effect on extinction per se.

Overall, the weight of findings from these cross-fostering
and PNN-related experiments lend further credence to the
notion that differences in extinction between the B6 and
S1 strains may have their origins in development. At the
same time, given the ability of PNN degradation to reduce
fear in the S1 strain, they illustrate how the extinction
phenotype retains some degree of malleability (i.e., ‘rescue-
ability’) into adulthood.

Nomination of extinction candidates

We next turned to the question of identifying genetic can-
didates associated with impaired extinction in the S1 strain.
Our approach was to leverage the results of QTL analysis to
examine which of the genes located within the extinction-
linked QTL on chromosome 3 exhibited expression changes
in response to extinction testing (Fig. 3a). We again focused
on the BLA for this gene expression analysis, given the
region’s critical role in extinction [22] and evidence of
extinction-related BLA abnormalities in S1 mice [58, 59].
Results showed that fear-induced and extinction-induced
distinct patterns of BLA gene expression in the two strains,
including an overrepresentation of extinction-related QTL
genes in S1 mice (Fig. 3b), none of which were upregulated
after extinction in B6 mice (Table S2–3).

To isolate which of the extinction-related genes in the
S1 strain might represent the most viable candidates for
further study, we filtered the expression data to generate a
final list of 11 genes that showed a significant (P< .05)
>0.25-fold increase in expression following extinction,
relative to fear (Fig. 3c). The gene exhibiting the biggest
expression change after extinction in S1 mice, Ppid
(encoding peptidylprolyl isomerase D, also known as

cyclophilin 40), also differed in its expression after fear in
S1 (downregulated) and B6 (upregulated) mice, indicating
that this gene was differentially recruited after extinction
and fear in the two strains. We confirmed that Ppid was
upregulated in the BLA in response to extinction testing in
an independent cohort of S1 mice (Fig. 3d). Furthermore,
examination of the genetic sequence of Ppid in the
S1 strain, using B6 as the reference, (www.sanger.ac.uk/sa
nger/Mouse_SnpViewer), revealed the presence of multiple
SNPs and other variants located throughout the gene
(Table S4), albeit with a functional significance that remains
unclear.

Thus, taken together, these convergent QTL and gene
expression findings nominate Ppid as a potential extinction
candidate gene.

Ppid distribution and localization in the amygdala

Our gene expression data demonstrate that Ppid is func-
tionally engaged after extinction in the BLA, but little is
currently known about the localization of this gene or its
protein product in this brain region. Using immunocy-
tochemistry, we demonstrated that the Ppid protein was
densely expressed in the BLA of S1 mice, as well as the
adjacent central and basomedial amygdala nuclei
(Fig. 3e–f), but that the overall levels of BLA Ppid protein
(quantified by western blots) (Figure S3a), as well as
mRNA expression (quantified by real-time-qPCR) (Fig. 3i),
were significantly lower in S1, as compared to B6 mice.
Using fluorescence-based in situ hybridization, we also
found that Ppid was clearly visible in both principal
(Slc17a7 (vGlut1) expressing) and inter (Gad1 (Gad67)
expressing) neurons within the BLA (Fig. 3g–h, Supple-
mentary Figure S5). These anatomical data indicate that
Ppid is ideally located to modulate extinction via its
expression in the BLA on excitatory and inhibitory neuronal
populations, both of which are implicated in extinction [12].

BLA-Ppid knockdown reveals a causal role in
extinction

Next we sought to test for a causal role for Ppid in
extinction by examining the effects of BLA-specific viral-
mediated Ppid knockdown, in both the S1 and B6 strains
(Fig. 3j). In B6 mice, Ppid knockdown increased levels of
freezing during extinction retrieval, but not other test-pha-
ses, as compared to mice transfected with a control virus;
i.e., knockdown impaired extinction in the B6 strain
(Fig. 3k). We then determined whether knockdown had any
demonstrable effects in S1 mice. Remarkably, against the
background of the typical, high freezing on extinction
retrieval in this strain, Ppid knockdown produced still
higher freezing on retrieval, relative to viral controls

O. Gunduz-Cinar et al.
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(Fig. 3l). These findings indicate that the loss of Ppid in the
BLA is sufficient to disrupt extinction memory formation in
B6 mice and exacerbate the already impaired S1 phenotype
by incubating fear after repeated CS presentation during
extinction training [60, 61]. Importantly, these data also
help frame the finding from our gene expression analysis
that Ppid was upregulated after extinction in the BLA of S1
mice. Specifically, in light of the extinction-rescuing effects
of BLA-Ppid overexpression, the extinction-induced Ppid
upregulation in S1 mice is likely to reflect the engagement
of an extinction-facilitating mechanism that is, nonetheless,
inadequate (‘subthreshold’) to rescue the behavioral deficit
in these mice in the absence of an additional intervention,

such as viral-mediated overexpression (summarized in
Figure S11,12).

BLA Ppid upregulation rescues extinction and
dampens fear cell activity

If an extinction-induced increase in BLA Ppid expression in
S1 mice remains insufficient to rescue extinction against the
background of the abnormally low basal Ppid set-point in
these mice, then one prediction is that increasing Ppid levels
above a ‘functional threshold’ might be sufficient. To test
this prediction, we examined the consequences of virally
overexpressing Ppid (without concomitant alterations in

Fig. 3 Ppid nominated as a modulator of amygdala-mediated extinc-
tion. a Experimental design for examining differential BLA expression
of extinction-QTL genes following fear or extinction. b There were
highly divergent fear-related and extinction-related BLA gene
expression profiles in S1 and B6 mice (Table S2–3 for full gene lists)
(n= 12). c Extinction-QTL BLA genes upregulated and down-
regulated in S1 mice after extinction, relative to fear. d Replication of
extinction-related Ppid upregulation in the BLA of an independent
cohort of S1 mice (t(9)= 5.13, P< .01, n= 5–6). Ppid protein dis-
tribution in BL and surrounding regions e and in BLA neurons f of S1
mice. Ppid mRNA expression (green arrows) on g Slc17a7 (vGlut1,
vesicular glutamate transporter 1) labeled principal neurons (red
arrows) and on h Gad1 (Gad67, glutamate decarboxylase 67) labeled
(red arrows) interneurons in the BLA of S1 mice. i S1 mice had lower
Ppid mRNA expression in the BLA, relative to B6 mice (t(20)= 3.54,

P< .01, n= 11). j Viral-mediated Ppid knockdown (KD) in BLA,
relative to control virus (t(25)= 2.56, P< .05, n= 13–14). k B6 mice
with BLA-Ppid KD showed higher freezing on extinction retrieval
following, relative to viral controls (t(13)= 2.40, P< .05, n= 7–8).
Freezing on extinction retrieval was lower than on extinction trial-
block 1 in the virus-control, but not KD, group (t(7)= 4.59, P< .01).
The KD and control groups both showed decreased freezing across
extinction trial-blocks (Con: t(7)= 3.70, P< .01; KD: t(6)= 6.62, P
< .05). l S1 mice with BLA-Ppid KD showed higher freezing on
extinction retrieval following, relative to viral controls (t(17)= 2.43,
P< .05, n= 9–10). *P< .05 Fear versus extinction, S1 versus B6 or
Ctrl versus KD. #P< .05 Ext trial-block 10 versus 1, †P< .05 Ret
versus Ext trial-block 1. Data are means± SEM. Con conditioning,
Ext extinction, Ret retrieval, KD knockdown, Ctrl control.
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expression of other Hsp90-associated genes) in the BLA of
S1 mice (Fig. 4a, b). We found that overexpressing Ppid led
to a trend for decreased freezing on the final fear con-
ditioning trial and significantly reduced levels of freezing on
extinction retrieval, but not other phases of testing, as
compared to mice expressing a control virus (Fig. 4c).
These data show that, consistent with our prediction, engi-
neering suprathreshold levels of Ppid in the BLA is suffi-
cient to, at least partially, rescue impaired extinction in the
S1 strain (summarized in Figure S11,12).

Next, to gain insight into how overexpressing Ppid worked
to modulate BLA function to affect extinction, we asked
whether the behavioral effects of BLA-Ppid upregulation
produced alterations in the neuronal encoding of extinction by
recording the activity of BLA neurons during extinction
retrieval, in vivo (Fig. 4d). We found that the viral groups did
not differ in baseline BLA neuronal firing rate, but that during
extinction retrieval a subpopulation of cells exhibited sig-
nificant changes in firing rate that peaked within ∼50ms of
CS presentation (20 and 11% of recorded cells in the control
and OE groups, respectively) (Fig. 4e,f). This profile of CS-
related neuronal firing is reminiscent of the BLA ‘fear-on
cells’ previously reported in B6 mice [62]. Entirely in keeping
with the persistence of fear in the control-virus S1 mice, CS-
related firing was robust during extinction retrieval (Fig. 4g).
By contrast, in S1 mice overexpressing BLA-Ppid, firing of
the CS-responsive neuronal population was significantly
blunted, consistent with the rescue of extinction produced by
Ppid upregulation (Fig. 4g). Thus, these recording data
demonstrate that Ppid regulation of extinction has an in vivo
correlate in the form of dampened amygdala neuronal
encoding of fear-related activity.

Ppid is anatomically and functionally coupled to GR

In our next set of experiments, we began to probe the
potential molecular pathways through which Ppid might
regulate extinction. Ppid is a member of the TPR protein
family, which along with FKBP5, FKBP52, and PP5, bind
heat shock protein 90 (Hsp90) to regulate the function and
localization of GRs and other steroid receptors [63, 64].
TPRs are also known to interact with immunosuppressants,
such as the calcineurin inhibitor, cyclosporine A (CsA) [65],
that have been found to impair fear extinction [66, 67].
However, because little is known about the link between
GR and Ppid in the brain, we first asked whether Ppid
protein colocalized with GR in the BLA by performing
immunostaining and immunoprecipitation. These non-
quantitative analyses showed that Ppid-stained neurons
exhibited staining for GR (Fig. 4h, i) and that the two
protein products co-precipitated in tissue obtained from the
BLA (Figure S9).

An anatomical connection between Ppid and GR at the
level of the amygdala is particularly intriguing because
antagonizing GR in the BLA has been found to impair
extinction in rats, whereas administration of a GR agonist,
intra-BLA or systemically, facilitates extinction in rats and
extinction-deficient populations of B6 mice [7, 68–71].
Moreover, we have previously found evidence of both GR
and HPA-axis abnormalities in S1 mice: as compared to B6,
S1 mice exhibit reduced hippocampal GR expression, as
well as exaggerated serum corticosterone responses to
extinction training and acute swim stress, but blunted cor-
ticosterone responses to swim stress after chronic restraint
[58]. Here, we extended these observations by showing GR
gene expression was significantly lower in the BLA of S1
than B6 mice (Fig. 4j, Supplementary Figure S8b). How-
ever, we also found that BLA GR protein expression was
not different between strains and, most notably, that pre-
extinction acquisition administration of the synthetic GR
agonist, dexamethasone, significantly reduced freezing on
drug-free extinction retrieval, relative to vehicle, in S1 mice,
but not B6 mice (Fig. 4k, Figure S6). This restriction of
dexamethasone’s extinction-facilitating effects to the S1 and
not B6 strain is consistent with prior work showing the drug
is only effective in subgroups of B6 mice that exhibit poor
extinction [71]. On the one hand, these data provide further
evidence of abnormal BLA GR gene expression in the
S1 strain but, on the other hand, show that activating GR
signaling retains the ability to facilitate extinction in these
mice to mimic the extinction-rescuing effects of BLA-Ppid
overexpression.

Prior work has shown that Ppid interacts with the
dynein motor complex to assist translocation of the GR to
the nucleus [72–74] and is upregulated in the hippo-
campus after stress [75]. This suggests that reduced GR
expression in the BLA of S1 mice may in part stem from
the reduced positive modulation of the gene stemming
from the low basal Ppid expression in these mice. Con-
sistent with such a connection, overexpressing Ppid in the
BLA led to an increase in GR gene expression in S1 mice
(Fig. 4l). This posits a scheme whereby Ppid promotes
GR-trafficking to trigger transcription of GR and other
genes supporting extinction-related plasticity. Finally,
providing initial functional support for this model, we
found that the ability of BLA-Ppid overexpression to
partially restore extinction in S1 mice was prevented by
blocking GR signaling with the GR antagonist, RU-486
(Fig. 4m).

Taken together, these findings establish a connection
between Ppid and GR and offer a heuristic model for how
Ppid might regulate amygdala-mediation extinction by
actively coupling with GR to promote the receptor’s func-
tional activity and drive extinction-related gene expression
in the BLA.
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Fig. 4 Ppid regulates amygdala-encoding of extinction and couples to
GR. a Viral-mediated Ppid overexpression (OE) (b, but not other
Hsp90-associated proteins) in the BLA of S1 mice, relative to control
virus (t(26)= 2.25, P< .05, n= 13–15). c S1 mice with BLA-Ppid OE
showed a trend for lower freezing on the final conditioning trial (t(22)
= 2.06, P= 0.0514, n= 12) and significantly lower freezing on
extinction retrieval, relative to viral controls (t(22)= 2.47, P< .05, n
= 12). Freezing on extinction retrieval was lower than on extinction
trial-block 1 in the OE, but not control-virus, group (t(11)= 2.85, P
< .05). d In vivo single-unit recordings were performed in the BLA of
Ppid-OE S1 mice during extinction retrieval. e Average baseline firing
rate of BLA units did not differ between groups. f Example raster plot
of a BLA neurons exhibiting CS-related activity. g The Z-scored
activity of CS-related BLA neurons was significantly attenuated during
extinction-retrieval in the BLA of Ppid-OE S1 mice, relative to viral
controls (F1,390= 1.67, P< .01 group× time interaction, 116 units

from n= 11–12 mice per group). h,i Colocalization of Ppid and GR
protein in BLA neurons. j S1 mice showed lower BLA GR mRNA
expression, relative to B6 mice (t(20)= 3.67, P< .01, n= 11). k S1
mice administered the GR agonist, Dex, prior to extinction training
showed lower freezing on extinction retrieval, relative to vehicle (Veh)
(t(28)= 2.40, P< .05, n= 15). l S1 mice with BLA-Ppid OE showed
higher BLA GR mRNA expression, relative to viral controls (t(29)=
2.22, P< .05, n= 15–16). m S1 mice with BLA-Ppid OE showed
lower freezing on extinction retrieval relative to viral-controls if
administered Veh, but not the GR antagonist, RU-486 (RU), prior to
extinction training F (3,17)= 3.09, P< .05, n= 5–6). *P< .05 B6
versus S1 or Con versus OE or Veh versus Dex, †P< .05 Ret versus
Ext trial-block 1. Data are means± SEM. Con conditioning, Ext
extinction, Ret retrieval, OE overexpression, Ctrl control, Dex
Dexamethasone.
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Discussion

Combining a range of approaches and techniques, the cur-
rent study reveals a novel genetic locus in mouse that is
associated with fear extinction, and demonstrates that Ppid,
an amygdala-expressed, GR-associated gene within this
locus, plays a causal role in regulating extinction by mod-
ulating BLA neuronal encoding.

We found that utilizing QTL analysis proved to be a tract-
able approach to nominate novel extinction candidates, but it is
important to bear in mind that this strategy reveals individual
genetic loci that typically only account for a small amount of
the variance in a complex trait [76]. As such, our data do not
identify Ppid as ‘the gene for extinction,’ but rather one of many
likely modulators of this highly complex behavioral readout.
Nonetheless, our findings nominating Ppid are convergent with
previous work that has strongly implicated another member of
the TPR protein family, Fkbp (FKBP51), as a mediator of
stress, fear and extinction in rodents. Given, the human FKBP
gene has been implicated as a genetic risk factor for trauma-
related disorders [77], it will be interesting to probe for potential
links between these disorders and the human PPID gene.

In another parallel with the findings of the current study,
these actions of FKBP5 have been linked to effects on
amygdala activity and GR function [7, 69, 77, 78]. Inter-
estingly, however, Fkbp binding to Hsp90 generates a
Hsp90-GR heterocomplex with lower cortisol affinity and
nuclear translocation [77], whereas by promoting nuclei
translocation, Ppid acts as a positive modulator of GR [72–
74]. Given evidence that TPR proteins compete for a single
Hsp90-binding site [79], there is likely a process of dynamic
interaction between Ppid, FKBP5, and other TRPs that
determines how GR signaling is modulated during extinc-
tion and other GR-recruiting states [80]. Thus, altering the
functional equilibrium of TPRs could represent a novel
approach to manipulating GR function for therapeutic goals.
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